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Abstract—3,5,6-Trisubstituted a-pyrones were synthesized starting from the Baylis–Hillman adducts. The synthesis was carried out
via the sequential introduction of ketone at the primary position of Baylis–Hillman adduct, lactonization, and the following oxida-
tion with PCC.
� 2006 Elsevier Ltd. All rights reserved.
Recently, considerable efforts have been devoted to the
synthesis of a-pyrones and related compounds by
numerous approaches involving transition metal-cata-
lyzed reactions.1–3 a-Pyrones have been used as syn-
thetic intermediates4 and are found in a wide variety
of biologically active natural products.1–3,5

Recently, a variety of chemical transformations using
the Baylis–Hillman adducts have been investigated thor-
oughly.6,7 Especially the usefulness of the Baylis–Hill-
man adducts for the synthesis of many heterocyclic
compounds is noteworthy.6,7 Basavaiah and Satyanara-
yana have reported the synthesis of functionalized [4.4.3]
and [4.4.4]propellano-bislactones starting from the Bay-
lis–Hillman acetate and indanone derivatives.8 Based on
the Basavaiah’s brilliant paper8 and our recent studies
on the chemical transformations of the Baylis–Hillman
adducts,7 we found an effective route to a-pyrone deriv-
atives from the acetate of the Baylis–Hillman adducts as
shown in Scheme 1.

The reaction of Baylis–Hillman acetate 1a and deoxy-
benzoin (2a) in the presence of t-BuOK in THF afforded
the corresponding methyl ester of 3a together with some
hydrolyzed compound 3a in a variable ratio. We con-
verted the ester derivative into the acid compound 3a
by NaOH hydrolysis of the crude reaction mixture after
simple aqueous extractive workup. With this compound
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3a in our hands, we examined the lactonization reaction,
which occurred easily by treatment of 3a with TFAA
(trifluoroacetic anhydride) in CH2Cl2 at room tempera-
ture to give 3-benzylidene-5,6-diphenyl-3,4-dihydro-
pyran-2-one (4a) in 83% yield.8,9

At the earliest stage of this project, we expected that we
could prepare 3-benzyl-5,6-diphenyl-a-pyrone (5a), the
double bond-isomerized compound. However, 4a was
not converted to 5a under various acidic or basic condi-
tions. In addition, compound 4a has limited stability
and decomposed slowly even at room temperature to
many intractable mixtures. Thus, we examined the oxi-
dation of 4a with a variety of conditions. Among the
conditions, PCC oxidation10 was found to be the best
one and to our delight we could obtain 3-benzoyl-5,6-di-
phenyl-a-pyrone (6a)11 in 59% yield from 4a.10,11 Such
an allylic oxidation accompanying the isomerization of
double bond has been reported10a,f and the structure
of 6a was confirmed by comparison with the reported
spectroscopic data.9,11

Encouraged by the successful results, we examined the
reactions of Baylis–Hillman acetates 1a–d and various
ketone derivatives 2a–f and the results are summarized
in Table 1. As ketone compounds we examined deoxy-
benzoin (2a), desoxyanisoin (2b), propiophenone (2c),
acetophenone (2d), cyclohexanone (2e), and a-tetralone
(2f) as the representative examples. As shown in Table
1, the 3-arylidene-3,4-dihydropyran-2-one derivatives
4a–h were obtained in moderate to good yields
(50–83%). The following oxidations of 4a–h with PCC
afforded the desired a-pyrones 6a–h in moderate yields
(51–64%).
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Table 1. Synthesis of benzylidene lactones 4 and 3-arol-a-pyrones 6

COOR2

OAc

R1

1a: R1 = H, R2 = Me
1b: R1 = Me, R2 = Me
1c: R1 = Cl, R2 = Me
1d: R1 = H, R2 = Et

2a: deoxybenzoin
2b: desoxyanisoin
2c: propiophenone

2d: acetophenone
2e: cyclohexanone
2f: α-tetralone

1a-d

Entry Substrates Acid 3a (%) Lactone 4b (%) a-Phyrone 6c (%)

1 1a + 2a 3a (68) 4a (83) 6a (59)
2 1b + 2a 3b (70) 4b (80) 6a (55)
3 1c + 2a 3c (—)d 4c (50) 6c (60)
4 1d + 2a 3a (—)d 4a (61) —e

5 1a + 2b 3d (—)d 4d (50) 6d (64)
6 1a + 2c 3e (—)d 4e (70) 6e (58)
7 1a + 2d 3f (18) 4f (51) 6f (51)
8 1a + 2e 3g (43) 4g (52) –e

9 1a + 2f 3h (44) 4h (72) 6h (52)

a Conditions: (i) t-BuOK (1.1 equiv), dry THF, rt, 5 h; (ii) NaOH (3.0 equiv), H2O/MeOH, rt, 24 h; and (iii) aq HCl.
b Conditions: TFAA (2.0 equiv), CH2Cl2, rt, 2 h.
c Conditions: PCC (2.0 equiv), CH2Cl2, rt, 12 h.
d Yield was not determined.
e Oxidation was not tried.
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When we used acetophenone (2d), we could not obtain
the mono-adduct 3f in good yield. Instead bis-adduct 7
was isolated as the major product (Scheme 2). As
already shown in entry 7 in Table 1, compound 3f
showed similar reactivity in the following reactions.
Bis-adduct 7 could be converted into bicyclic compound
8 (38%) according to the similar mechanism reported8

together with mono-cyclic compound 9 (25%).

Similar results were observed in the reaction of 1a and a-
tetralone (2f) as in Scheme 3. We obtained mono-adduct
3h (44%) and bis-adduct 10 (27%)8 together. As in entry
9, mono-adduct 3h was converted into 4h and 6h simi-
larly. Bis-adduct 10 gave the tricyclic compound 11 in
53% yield as in Basavaiah’s paper.8

As shown in Scheme 4, we used acetylacetone (2g) in
order to introduce the simplest substituent, acetonyl
group, at the primary position of Baylis–Hillman adduct
as in our previous letter.12 By using compound 3i, we
prepared 4i and 6i similarly in moderate yields.

In summary, we developed a facile and efficient proce-
dure for the synthesis of 3-arylidene-5,6-disubstituted-
3,4-dihydropyran-2-ones and 3,5,6-trisubstituted a-
pyrones starting from the Baylis–Hillman adducts.
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